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AFIT/GNE/ENP/10-M09 

Abstract 

 

Monte Carlo uncertainty quantification (UQ) capability has been added to a code for 

modeling multi-component steady-state isotope-separation enrichment cascades to 

characterize the propagation of uncertainties in input data that define the cascade and the 

feed. Random samples of error for every computational input are drawn from its 

individual uncertainty distribution and added to the inputs, creating a set of enrichment 

cascade problems with perturbed inputs. The set of problems is solved using the verified 

code. The cascade outputs are then characterized using the empirical cumulative 

distribution. The uncertainty output data are analyzed to gain new insights into the 

behaviors of enrichment cascades. The UQ capability is an investigative tool that can be 

used to explore current and new questions of interest regarding enrichment. 
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UNCERTAINTY QUANTIFICATION OF MULTI-

COMPONENT ISOTOPE-SEPARATION CASCADE 

I. INTRODUCTION 

A multi-component mathematical model of an enrichment cascade for 

gaseous diffusion technology has been developed. That work has been continued 

with the development of a multi-component isotope-separation cascade model for 

gas centrifuge technology. These steady-state models have been implemented in 

computer code. A new version of the code has been written for the cascade 

model. The work on this new code has been enhanced through the development 

of an uncertainty quantification (UQ) component that adds a new capability to 

the cascade model. The UQ capability uses a Monte Carlo approach to perturb 

input parameters that define the enrichment cascade. The propagation of 

uncertainties through the cascade is characterized by analysis of the variation of 

the resulting output data. 

I.A. Objectives 

In an enrichment cascade with interconnecting stages, uncertainties in the 

inputs can propagate through the cascade and cause uncertainties in the outputs. 

A characterization of these uncertainties is necessary to estimate the size of the 

errors in the outputs. To accomplish this task, the cascade code should be 

verified and an UQ capability should be developed and demonstrated. 

1. Verify Cascade Code for Two and Multiple Components: Verify the 

accuracy of the cascade code for a two-component ideal cascade and for 

multi-component cascades. 

2. Develop and Implement Monte Carlo UQ Capability: Develop the UQ 

methodology and implement the capability in code. 

3. Demonstrate UQ Capability: Perturb a variety of input parameters 

defining an enrichment cascade for several multi-component problems. 
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4. Characterize Uncertainty Output Data: Plot the empirical cumulative 

distributions and analyze the uncertainty output to assess the propagation 

of uncertainties. 

I.B. Background 

 Most elements have different isotopes that are chemically similar but that 

behave very differently in nuclear reactions. Depending on the specific nuclear 

application, certain isotopes may be more desirable than others. As a result, 

enrichment methods have been developed and employed to separate isotopes of 

interest. Enrichment methods use a series of stages to separate one isotope from 

another of the same element. Regardless of the specific enrichment technology, 

the separation efficiency for a single stage is generally small. To produce a 

sufficient purity of a desired isotope, many stages must be tied together in series 

to form a cascade. If the degree of separation is highly effective per stage, the 

cascade would require few stages to enrich the preferred isotope to the desired 

percentage. Likewise, highly inefficient separators would require a greater number 

of stages to produce that percentage of the desired isotope.  

I.B.1 Current Isotope-Separation Models 

 A number of enrichment models already exist that handle cascades 

consisting of two components. However, multi-component models, other than a 

few approximation schemes that have been proposed, are largely an unsolved 

problem. In addition, solvers for isotope separation cascades are not readily 

available. Thus, a model that can solve for all the isotopes or components of an 

element would allow for a greater understanding of enrichment cascades.  

A four-component enrichment model has been developed for 1-up, 1-down 

gaseous diffusion cascades [12]. That work has been extended into a more general 

mathematical framework that can handle modest-sized cascades with larger 

separation factors and consisting of four or more components [10]. This math 

model is called the multi-component isotope-separation cascade model, and it has 

been implemented in computer code. The cascade code uses a custom-built 

iterative process to solve the system of nonlinear equations in the cascade model. 
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A new version of the cascade code has been written with refinements in the 

equations that allow the solver to converge to a solution in fewer iterations [9].   

I.C. Problem Statement 

A Monte Carlo UQ capability is developed and implemented in code. The 

capability is demonstrated through perturbations of input data for a variety of 

multi-component enrichment cascades and characterization of the uncertainties in 

output data. 

I.D. Scope and Limitations 

Because the cascade model assumes a steady-state condition, the Monte 

Carlo UQ capability will work under the same assumption. As such, the time 

required for isotope concentrations to move between stages or between other 

specific parts like mixers, inlets, and outlets is not considered. Secondly, this 

thesis does not address parameters such as separative work, inventory, operating 

cost, discrete uncertainties (e.g., flow leakage), or physical uncertainties (e.g., the 

fabrication tolerances of actual machines). These parameters are beyond the 

scope of this research effort. The focus of this thesis will be on the input 

parameters:  feed composition, cuts, and separation factors. 

I.E. Approach 

 An enrichment cascade consists of interconnecting stages where 

uncertainties in the inputs for any one stage will result in errors in the isotope 

compositions everywhere in the cascade. Because the cascade model is comprised 

of nonlinear equations, the perturbation in the output is not readily computable. 

Additionally, standard propagation-of-error formulas generally assume normally-

distributed errors and tend to be unworkable with complicated codes. Thus, UQ 

as applied to the cascade model requires a different method. The alternative is to 

use a Monte Carlo approach to characterize the propagation of uncertainties.  

Generally, Monte Carlo methods use randomly generated numbers as 

inputs to evaluate a deterministic model in an iterative fashion. Monte Carlo is 

essentially a sampling method because the inputs required will be generated from 
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probability distributions. In effect, the process is similar to sampling from a 

population and is a useful approach for complex or nonlinear models. As a result, 

this technique is appropriate for the cascade model because the mathematical 

framework governing the model is a system of nonlinear equations. 

The UQ capability quantifies the uncertainties in the inputs and 

determines the size of the errors in the output data to enhance the fidelity of the 

existing cascade model. Random error samples for all computational inputs of the 

cascade are drawn from its individual uncertainty distribution, and the errors are 

added to each input value to create perturbed values. These perturbed values 

define an enrichment problem that the cascade code solves. Once the code 

converges to a solution, the uncertainty output data are written to file. This 

entire process is repeated a specified number of times. The uncertainty output 

data are characterized using the empirical cumulative distribution and analyzed.  

The Monte Carlo UQ capability is implemented in Fortran-95 code using 

good modern programming practices. The code is well-documented, flexible, 

portable, and accurate. 

Chapter 2 describes the cascade model in greater detail. The set of 

equations that make up the cascade model are presented. Sources of uncertainties 

inherent in the input parameters to the cascade model are discussed. Last, how 

Monte Carlo propagation of uncertainties is handled in a code environment is 

explained.  

Chapter 3 delves into the implementation of the UQ capability in Fortran-

95 code. The organization of the code will be described in parts, starting with the 

input data. Pseudo-code for the UQ capability and the cascade solver are 

provided to show how the code takes input data and solves for a solution. The 

main program and supporting modules are broken down. 

Chapter 4 presents the verification of the cascade code for two-component 

ideal cascade problems using a derived closed-form solution. Verification for 

multi-component problems is also accomplished by internal checks in the code, by 

computing the relative difference of two answers, and by checking whether the 

solution from the code makes good sense. 
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Chapter 5 gives the results from perturbing a variety of cascade inputs 

and analyzes the uncertainty output data. The data generated from the 

perturbed inputs are plotted and analyzed to see if the errors are Gaussian or 

non-Gaussian. In addition, other input perturbations are made to gain additional 

insights into enrichment cascades. 

Chapter 6 summarizes the research done and gives observations obtained 

from conducting this thesis research. This chapter also provides conclusions and 

offers recommendations to continue the research. 
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II. THEORY 

This chapter provides background on the cascade model, explains the 

sources of uncertainties that exist in an enrichment cascade, and how a Monte 

Carlo propagation of uncertainties can quantify those uncertainties. First, the 

equations and terms governing the cascade model are explained in detail. Second, 

all sources of uncertainties in the model are described. Finally, the UQ 

methodology is presented.  

II.A. The Multi-Component Isotope-Separation Cascade Model 

An enrichment cascade is a system of many parts. Individual machines 

that handle a small portion of the enrichment process are called units. Many 

units with their flows connected in parallel form a stage. Numerous stages are 

tied together in series to form a cascade in which feed material enters the inlet of 

one or more stages. These are called feed points.  

Cascades come in a variety of types:  simple, countercurrent recycle, 

square, ideal, and close-separation. This research deals mainly with the 

countercurrent cascade, and an example of this type of cascade called a 1-up, 1-

down cascade is shown in Figure 1. 
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Figure 1.  Example of 1 up-1 down Cascade 

 

A 1 up-1 down cascade allows the enriched flow from one stage to be 

routed to the stage above while the depleted flow is moved to the stage below. 

The enriched flow from below and the depleted flow from above come together at 

the mixer and leave the opposite side as a single inlet stream that goes into a 

separator. In Figure 1, each separator is identified as a particular stage. If feed is 

introduced at that particular stage, the inlet stream will be comprised of the feed 

flow in addition to the enriched flow from below and the depleted flow from 

above. For illustration purposes, only one feed point is shown in Figure 1 

although many feed points can exist in a real cascade operation. 

All stages above the feed stage are known as enriching stages because their 

purpose is to enrich the desired isotope to a higher concentration. Likewise, all 

stages below the feed point are called the stripping stages because they strip the 

desired isotope out of the stream and send it back up to the feed stage. Given the 

division of enriching stages and stripping stages, the depleted stream that comes 

out of stage 1 is called the waste stream. Similarly, the enriched stream that 

comes out of stage n is called the product stream. 
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Figure 2 shows stage i of an enrichment cascade. The numbered circles are 

called mixers. These parts receive material from three sources: the feed stream 

(coming in the left side in this diagram), the depleted stream coming down one or 

more stages above (indicated by a dashed line), and the enriched flow coming 

underneath from the stage below (indicated by a solid line). The enriched stream 

leaving the stage enters a flow splitter from which portions can be routed back to 

the stage i inlet, to other stage inlets, or be removed as product. The depleted 

stream is also split with portions to stage i and other stage inlets or as waste. 

The terms ,  ,  and i i ia b c  represent the mass flow rates of the tails, heads, 

and the inlet streams at stage i, respectively. The terms “tails” and “heads” are 

often used synonymously with “depleted” and “enriched”, respectively. The term 

if  is the mass flow rate of the feed stream at stage i. The d and e factors, each 

written with two subscripts, represent the fractions of the depleted and enriched 

streams, respectively. The factor ijd  is the fraction of the depleted stream coming 

out of stage j that is directed to the inlet mixer at stage i. Likewise, ije  

represents the fraction of the enriched stream out of stage j into stage i. The 

product and waste flows at stage i are ip and iw , and the fractions from stage i to 

product and waste are 0ie and 0id , respectively.  

 

 
Figure 2.  Possible Flow Paths for Stage i 
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Because the cascade is assumed to be at steady-state in the current model, 

the inlet mass flow rate must equal the sum of the outlet mass flow rates at each 

stage. The separator flow balance equation,  

 ,i i ic a b    (1) 

expresses the conservation of mass. The separator splits the flow into the 

enriched and depleted streams. The fraction that is in the enriched stream is 

called the cut: 

 .ii
i

b

c
   (2) 

The efficiency of a cascade is often very sensitive to the cuts. The equations for 

flows make up a linear system in the cascade model. 

The mass of each component is also conserved; we write the separator 

component-flow balance equation as  

 ,i ik i ik i ikc z a x b y   (3) 

where , ,  and ik ik ikx y z  are the fractions of component k in the depleted, enriched, 

and inlet flows at stage i, respectively. 

 In the special case of a 1 up-1 down cascade, the flow balance equation at 

the inlet mixer is  

 1 1 .i i i ic a b f
 

    (4) 

In order to make our model applicable to any design, we generalize the inlet flow 

balances to account for the outlet flow splitting factors d and e . Thus, 

accounting for flows that come from all the other stages, the inlet mixer flow 

balance equation is  

 
1 1

n n

i ij j ij j i
j j

c d a e b f
 

     (5) 

where n is the number of stages. 
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To account for the component fractions at each stage, the ,  ,x y  and 

z factors are included in the inlet mixer flow balance equation to form the inlet 

mixer component-flow balance equation 

 
 

   
1 1

n n

i ik ij j jk ij j jk i ik
j j

c z d a x e b y f u  (6) 

where iku  
is the fraction of component k in the feed flow at stage i.   

The separator performance equation, the nonlinear aspect of this system of 

equations, is  

 , ,
ik ik

i k k
ik ik

y x

y x
 

 

  (7) 

at every stage i for every pair of components k and .k   The performance 

parameters , ,i k k   must satisfy the relations , , , , , ,i k k i k k i k k       for all choices of 

the subscripts. Thus, equations (7) are redundant. To avoid needless poor-

conditioning, the solver applies only the equations for ,  i ik k   at stage i 

where i  
is the dominant component at stage i:  for .

ii ik iz z k


 
 
The 

distinction of i is important because the dominant component depends on the 

stage.  

To simplify notation, the convention of using only the last digit of each 

component as subscripts will be adopted here. Hence, the separation factor for 

stage i consisting of 235U and 238U is written as 

 5 8
,5,8

8 5

.i i
i

i i

y x

y x
   (8) 

 To summarize, the equations that make up the cascade model are the 

separator flow balance equation, the equation for cuts, the inlet mixer flow 

balance equation, the separator component-flow balance equation, the inlet mixer 

component-flow balance equation, and the separator performance equation. They 

are equations (1), (2), (3), (5), (6), and (7), respectively. Together, these 

equations allow for the modeling of multi-component enrichment cascades of 

various sizes, feed points, and connection patterns. 
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II.B. Sources of Uncertainties in the Cascade Model 

Mathematical uncertainties can stem from a loss of precision in 

calculations. Examples include round-off errors and errors as a result of 

subtraction between two nearly identical values that can result in a catastrophic 

cancellation. Many small uncertainties can, over time, accumulate to give 

unrealistic answers. For any system of equations, identifying the sources of 

uncertainties in the inputs and understanding how they propagate are necessary 

to know the reliability of the answers in the outputs. For the system of nonlinear 

equations that define the cascade model, propagation of uncertainties becomes 

crucial because small perturbations in the inputs may cause comparatively large 

changes in the outputs. 

Most input parameters that define an enrichment cascade are sources of 

uncertainties. The inputs with uncertainties are the cuts, the separation factors, 

and the starting feed composition. Cuts and separation factors are stage 

dependent, so every stage has its own cut and separation factor. For a small 

cascade of 50 stages, there would be 100 input uncertainties already if only the 

cuts and the separation factors were considered. For feed composition, each 

component is a source of uncertainty because the percentage of each isotope is 

not an exact value. Because a cascade can have multiple feed points with each 

feed stage containing a different composition, it is clear that the number of 

uncertainties can be quite large. 

As an enrichment cascade starts, many other uncertainties come into play. 

Figure 2 shows that the feed stream enters an inlet mixer and is joined by two 

other streams, a depleted stream coming from the stage above as well as an 

enriched stream coming from the stage below. The fractions of the depleted and 

enriched streams,  and ij ijd e , are sources of uncertainties. Because the inlet 

stream is comprised of these three streams, the inlet stream contains many 

uncertainties as it enters a stage for enrichment. As a stream leaves a stage after 

separation, the stream splits into an enriched stream and a depleted stream. 

Every time a flow is split, two additional uncertainties are introduced into the 

system. For example, suppose a flow is split into two pipes, and 50% of the mass 
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goes into each pipe. The amount that enters each pipe is a source of uncertainty 

because there is no guaranteed that exactly 50% will be present in each of the 

two pipes. One pipe may have slightly more material while the other pipe may 

have slightly less material. As a result, as material moves along the enrichment 

process, its numerous uncertainties will propagate throughout the cascade as the 

stream enters new mixers, combine with other streams, and enter new stages for 

further separation.  

Because each stream is a combination of isotopes, the components 

introduce new uncertainties as their concentrations change from the start of the 

cascade to the end. Uncertainties in the separation factors affect uncertainties in 

component fractions because the separation factor is defined as the quotient of 

isotopic ratios. Similarly, the uncertainties in the cuts affect the uncertainties in 

the mass flow rates because the cut is defined as the ratio of the enriched flow to 

the inlet flow. 

II.C. Monte Carlo Propagation of Uncertainties 

The first step is to determine all the sources of uncertainties in the 

enrichment cascade. These uncertainties have been identified as input parameters 

to the cascade model. For each uncertainty, random samples of error are drawn 

from its individual uncertainty distribution. The Intel Math Kernel Library 

(MKL) software [7] has a suite of routines as part of its Vector Statistical Library 

(VSL) that I use to generate the random error samples. Once the errors are 

drawn, they are added to the input value to create a set of perturbed problems 

which are then passed to the cascade code to be solved one at a time. 

The code outputs consisting of waste and product flow rates and 

component fractions for each perturbed problem are written to files. Because 

natural uranium is used as the example element, each output file will contain 

either flow rate data or uranium component fraction data for the entire set of 

perturbed problems. For each perturbation of an input parameter, eight output 

files get generated with data on product flow rates, waste flow rates, and product 

and waste fractions for each component. Once all output files are obtained, 
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Mathematica™ is used to plot the empirical cumulative distributions. 

Characterizations of the uncertainty output data are done using Minitab 

software. 
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III. IMPLEMENTATION OF THE UQ MODEL  

This chapter explains how the sources of uncertainties and the Monte 

Carlo UQ capability are implemented in Fortran-95 code. A top-down design was 

done to deconstruct the problem into logical parts that could be managed, coded, 

and tested individually. The organization of the code and the input data are 

discussed before the individual code pieces are explained in detail. 

III.A. Organization of the Code 

The UQ code is written to draw random samples of error to create 

perturbed inputs which are then passed to the cascade code to solve. One main 

program and ten modules make up the entire UQ code and the cascade code. The 

main program calls on the various modules to perform all calculations and to 

write all data to file. This organization makes the code flexible and allows the 

modules to be reusable. The entire program is compiled using Intel Visual 

Fortran Compiler Version 11.1.048 [8]. Additional routines used in this research 

include Intel MKL Version 10.2.2.025 software [7] to solve the systems of linear 

and nonlinear equations in the cascade model and to generate random Gaussian 

samples of error for the UQ portion. 

III.B. Input Data 

The main input data to the cascade solver routines are the cuts, the 

separation factors, and the component concentrations. Additional input data are 

the number of components, the number of stages, and the feed stage. Because 

each input can be perturbed individually and also jointly, the number of possible 

perturbations of the inputs can quickly become daunting. The purpose of this 

research is to build and demonstrate an UQ capability, rather than to test how 

every cascade input or combination of inputs can possibly be perturbed. 

Therefore, I constrained the types of problems that were explored in order to 

keep the data sets manageable. For this research, enrichment problems were 

limited to a 1 up-1 down cascade with a single feed stage. Except where noted, 
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problems were kept to 50 stages using three components with feed composition 

consisting of natural uranium.  

III.C. Main Program and Supporting Modules  

The methodology has been described fully in Chapter 2. The pseudo-code 

for the UQ portion is shown in Figure 3. The descriptions of the actual code 

follow the pseudo-codes. 

 

UQ Pseudo-code Algorithm  

Initialize: 

1. The number of random samples to be drawn. 

2. The number of problems to be solved. 

3. The number of stages. 

4. The number of components. 

5. The stage number where feed is fed into the cascade. 

End of Initialization 

6. Create all arrays. 

7. Prompt user to provide a starting value for specific cascade input. 

8. Initialize uranium component fractions. 

9. Set the mean and standard deviation for the cascade input. 

10. Draw random samples of error. 

11. Add error samples to cascade input to create perturbed inputs. 

DO i=1, nProblems 

12. Solve the enrichment cascade problem. See Figure 4 for the pseudo-code for this part. 

END DO 

13. Write output data to file. 

 

 

Figure 3.  UQ Pseudo-code Algorithm 

 

When the perturbed inputs have been created, they are passed to the 

solver. Figure 4 shows the pseudo-code for how an enrichment problem gets 

solved in the cascade code. 



16 

 

 

 

Cascade Code Pseudo-code Algorithm  

1. Set cascade type as 1 up-1 down. 

2. Populate d and e matrices and p and w vectors. 

3. Set feed stage. 

4. Populate u and z matrices. 

5. Compute separation factors. 

6. Set the cuts. 

7. Solve for flow rates c, b, and a, in this order. 

8. Solve for relative feed. 

9. Populate the kappa vector with the dominant component. 

DO 

10. Iteratively solve for inlet concentration z. 

11. Solve for the depleted and enriched fractions, x and y, respectively. 

UNTIL converged 

 

 

Figure 4.  Pseudo-code for Cascade Code 

 

Now that the pseudo-codes have been presented, the main program and 

supporting modules will be discussed in detail. Related computations have been 

coded in either functions or subroutines and grouped under the same module. 

Together, they generate the random error samples and solve the enrichment 

problems. 

 

UncertaintyQuantificationMC Program 

 The UncertaintyQuantificationMC program calls on subroutines to perturb 

the input parameters set by the user, calls other subroutines to solve the 

perturbed problems, and writes the uncertainty output data to files. The program 

starts by allowing the user to initialize input parameters:  the number of random 

samples to be drawn, the number of problems that will be solved, the number of 

components in the cascade, the number of stages in the cascade, and the feed 
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stage. Next, all the arrays that will be used to store intermediate computations 

or to hold output data are created. The program then prompts the user to give 

an initial value to a particular cascade input or set of inputs. The value is passed 

to a subroutine that generates the random samples and adds these samples to the 

user’s chosen value. The perturbed inputs are then sent through the cascade 

solver one at a time to be solved. The solution is written to file each time. Once 

the entire set of problems is solved, the uncertainty output data are written to 

text files. 

 

CreateUserInterface Module 

 This module contains four subroutines. The first three subroutines prompt 

the user to give a starting value for one of three input parameters: the cut, the 

separation factor, or a dAlphaForUnitMassDifference value which is used by the 

program to calculate the separation factors for all the stages based on the mass 

difference of the two constituent components. The fourth subroutine, 

SetComponentFractions, initializes the uranium isotopes to values found in 

natural uranium, depending on the number of components specified by the user. 

For two-component problems, 235U is set to 0.007 and 238U is set to 0.993. For 

three-component problems, 234U is set to 0.0001, 235U is set to 0.007, and 238U is 

set to 0.9929. For four components, the values are 0.0009, 0.007, 0.0001, and 

0.992 for 234U, 235U, 236U, and 238U, respectively. While the code certainly allows 

for values other than natural uranium percentages, these values have been chosen 

to constrain the problem for manageability as an initial demonstration of the UQ 

capability. 

 

RandomSamples Module 

 This module has two subroutines. The subroutine GetInputParameters 

sets the mean and standard deviation for each input parameter. The second 

subroutine, DrawSamples, receives the mean and standard deviation and passes 

them to a random number generator to generate normally-distributed error 

samples. The number of samples drawn is initialized by the user at the outset of 
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the program. To perturb the cuts and the separation factors, the number of 

samples drawn is determined by the number of stages multiplied by the number 

of different problems to be solved. For example, a 50-stage enrichment problem 

would require 50 perturbed cuts and 50 perturbed separation factors, one for each 

stage. If one set of data required 200 problems to be solved, 10,000 random 

samples would need to be generated for the cuts and another 10,000 random 

samples would be needed for the separation factors. 

 

DataModule Module 

 This module has numerous subroutines that set up the necessary 

conditions for an enrichment problem to be solved. First, the module allocates all 

the arrays necessary to hold the data and initializes them to 0. Second, the 

subroutine SetFixedUpDownConnections initializes the matrices,  and D E , to 

hold the depleted and enriched fractions as well as the product and waste 

vectors,  and p w , respectively. Next, the subroutine SetOneFeedPoint initializes 

the feed flow rate vector, f, the feed concentration matrix, u, and the inlet 

concentration vector, z. Because only one feed point is used, f is set to 1 at the 

feed stage and to 0 at all other stages. If used, SetLinearCuts can set the cut for 

all stages to the same value. SetAlphaByMassDifferences populates a three-

dimension array with dAlpha values. In the code, the separation factor  is 

written in the form  

   1  (9) 

to preserve significant digits during computations. The values of dAlpha are just 

the  portion of equation (9). FindFlows solves for the inlet, enriched, and 

depleted flow rates, ,  ,  and c b a , respectively. Finally, SetSources computes the 

relative feed matrix, s, from vectors f and c and matrix u. The equation for s is  

 .i ik
ik

i

f u
s

c
  (10) 
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CascadeRoutines Module 

 This module contains subroutines that solve for z, x, and y which are the 

inlet, depleted, and enriched fractions, respectively, for all components at every 

stage. CheckSolution is a subroutine that ensures that all four equations of the 

cascade model maintain balance at each stage for each component. That is, what 

is calculated for the left-hand side of the equation must equal the right-hand side 

of the equation to a specified tolerance. 

 

LinearAlgebraUtilities Module 

 This module contains several functions that calculate the norms of vectors 

and matrices, a function that uses Gaussian elimination to solve a system of 

equations, and a function that solves the SRD between two scalars, vectors, or 

matrices. The Gaussian elimination function is present but not used to solve the 

systems of equations in this research. Instead, the Parallel Direct Sparse Solver 

(PARDISO) from MKL is used. The Gaussian elimination function is maintained 

for code flexibility in case another user cannot access the PARDISO subroutines. 

 

Other Modules 

The modules under this section play secondary support roles to the main 

program and the primary modules. WriteToFile writes all uncertainty output 

data to text files for analysis. Kinds is a module that sets the precision for 

integers and real numbers used in the program. FileUnits assigns each unit 

number a descriptive name and is used to open and close files for data to be read 

from or written to file. This naming convention allows for better documentation 

of code. SparseSolverRoutines contains a subroutine to solve systems of equations 

of the form 

 Ax b  (11) 

for vector x where A is a matrix of size n by n and b is a vector of length n. The 

subroutine PardisoMethod makes calls to PARDISO to solve for the inlet flow 

rate, c, and the inlet concentration, z, at each stage. IdealCascade contains a 
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subroutine to solve for z at each stage using a closed-form solution and a function 

to solve for the corresponding cut at each stage. This module is used as part of 

the verification process to check whether the answers from the code match the 

closed-form solution. 
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IV. VERIFICATION OF THE CASCADE CODE 

This chapter verifies the cascade code for the two-component ideal cascade 

type as well as for multi-component cascades. Validation is not considered at this 

time because validation requires knowledge of the actual physical measurements 

of an enrichment plant or specific machines. Such an effort is beyond the scope of 

this thesis, so verification testing is the focus. 

IV.A. Verification of Two-Component Ideal Cascade 

The cascade code can be verified for two components by using equations 

presented in Benedict, Pigford, and Levi [2:660] as well as an additional derived 

equation. The first step is to define the number of stages in the ideal cascade to 

be solved. For an ideal cascade, the number of stripping stages, sn , is given by  
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and the number of enriching stages, en , is given by 
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In equation (12), Fz is the fraction of the lighter component in the feed 

stream, Wx is the fraction of the lighter component in the waste stream, and   is 

the heads separation factor. In equation (13), Py is the fraction of the lighter 

component in the product stream. We define Fn as the stage where feed is fed 

into the cascade. 

The equation for the heads separation factor is  
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and the equation for the tails separation factor is 
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In an ideal cascade, the heads separation factor is equal to the square root 

of the stage separation factor,  , which is also equivalent to the tails separation 

factor. The equation can be represented as  

 .     (16) 

The equation that describes the relationship between the abundance ratio 

in the product i  and the abundance ratio in the feed  i  at each stage is given 

by 
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The equation that gives the concentration of the lighter component at each stage 

can be written as  

 

 

 
.

1 1

1,...,

i F
F

i i F
F

z
z

z

i n










 
  

 


 (18) 

The derivation for Equation (18) is given in Appendix A. 

 If the concentration of the lighter component is known for each stage, the 

cut at each stage of an ideal cascade is computed with the equation 
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 (19) 

 To verify the cascade code for two components, values were chosen for 

, , , , ,  and W F P Fx z y n n to create an ideal cascade problem. The values are listed 

in Table 1. Using equations (12) and (13), these values give 34 enriching stages 

and 7 stripping stages for a total of 41 stages. The feed stage is set to 8 which 

makes it part of the enriching section. 
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Table 1.  Parameters to Verify Two-Component Ideal Cascade Problem 

Wx  0.003 

Fz  0.007 

Py  0.208 

  1.237 

Fn  8 

n  
41 

 

Using uranium as the element to be separated, the 41-stage problem was 

put into the cascade code and the inlet concentration at each stage was 

calculated using equation (18). The cascade code then solved the same problem 

again using its own algorithm. Next, the symmetric relative difference (SRD) 

between the closed-form solution and the code solution was computed for each 

stage. The SRD is the fraction one answer is different than another answer. 

Therefore, it is a much more stringent test for the convergence of two numbers 

than absolute difference. The equation for SRD is 

  , 2
x y

SRD x y
x y





 (20) 

The largest SRD and the average SRD between the closed-form solution and the 

cascade code for all stages are given in Table 2.  

 

Table 2.  SRDs Between Closed-Form Solution and Cascade Code 

Largest SRD Average SRD 

112.56 10  127.97 10  

 

Table 2 shows that the largest SRD for all stages is 112.56 10 while the 

average SRD is 127.97 10 . These two SRDs illustrate that the inlet 

concentrations for 235U computed from the closed-form solution and the cascade 
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code match to a very high degree. Answers from both methods match to at least 

ten digits.  

IV.B. Verification for Multi-Component Cascades 

Verification of the cascade code for multi-component problems is 

somewhat different because closed-form solutions do not exist when the number 

of components exceeds two. Hence, it is necessary to consider other verification 

methods besides exact formulae. 

The first verification test for a multi-component cascade is actually part of 

the code itself. The CascadeRoutines module contains a subroutine called 

CheckSolution that ensures that all four equations of the cascade model—the 

inlet mixer flow balance equation, the separator component-flow balance 

equation, the inlet mixer component-flow balance equation, and the separator 

performance equation—are balanced for all components at all stages to specified 

tolerances. In other words, the left-hand side of each of the four equations must 

equal the right-hand. In addition, the sum of components must be equal to one 

for all stages. That is,  
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k k k k

x y z u  (21) 

for component k at stage i where K is the number of components.  

The inflow mixer equations and separator equations use a tolerance of 

810 , the sum of components use a tolerance of 1010 , and the separation factors 

use a tolerance of 1210 . If the SRD between the left-hand side and the right-

hand side exceeds the tolerance specified, an error message is printed to screen. 

When testing several well-defined problems with reasonable inputs, none of the 

error messages were triggered. 

The second verification test for multi-component problems is to ensure 

that the solutions give consistently accurate digits. Again, using uranium 

isotopes, a four-component 50-stage problem was solved twice, once with double 

precision arithmetic and a second time with quadruple precision arithmetic. The 

SRD was then computed between the two answers at every stage to see how 
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closely the two precisions match. The largest SRDs and average SRDs for all 

flows and all concentrations of 235U are shown in Table 3.  

 

Table 3.  Largest SRDs and Average SRDs of 235U 

 Largest SRD Average SRD 

Depleted Flows 154.78 10  151.41 10  

Enriched Flows 154.96 10  151.26 10  

Inlet Flows 152.99 10  151.17 10  

Depleted Fractions 143.55 10  153.21 10  

Enriched Fractions 143.54 10  153.01 10  

Inlet Fractions 143.52 10  152.89 10  

 

Table 3 shows that the largest SRDs and the average SRDs between the 

double precision run and the quadruple precision run are consistently small. This 

indicates that the two answers match to a high degree of accuracy, and the 

solutions are good to at least 13 significant digits. The small SRDs indicate the 

problem is well-conditioned and the tolerances are met. 

The third and final verification test for multi-component problems is to 

ensure that the solution to the problem is reasonable. That is, the outputs should 

make logical sense given a proper understanding of uranium enrichment. For 

example, the heaviest component, 238U, should decrease while the lighter 

components, 234U and 235U, should increase as the stage number increases. For the 

four-component problem used, this is certainly the case as seen in Figure 5. The 

digits “4”, “5”, “6”, and “8” correspond to 234U, 235U, 236U, and 238U, respectively. 

The plot also shows that 235U peaks at stage 44 and then its concentration 

decreases a small amount as it goes to the final stage. 
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Figure 5.  U Component Fractions at Each Stage 
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V. PERTURBATION RESULTS AND ANALYSIS  

The following constraints were set to define enrichment problems that 

were then perturbed to produce the uncertainty output data. These constraints 

make up a well-defined problem that was used to verify the code for multi-

component cascades. 

1. Number of Components:  3 

2. Number of Stages:  50 

3. Cascade Type:  1 up-1 down cascade 

4. Feed Point:  Stage 10 

5. Feed Composition:  Natural feed consisting of 0.01% 234U, 0.7% 235U, and 

99.29% 238U 

6. Number of Problems Solved: 200 

7. Tolerances 

a. Inlet fraction:  1210  

b. Normalization:  1010  

c. Inflow mixer and separator balance:  810  

d. Separation factor:  1210  

V.A. Characterizing Output Data from Gaussian Inputs 

For the first test, the cuts were perturbed while the separation factors 

were held constant. For the second test, the separation factors at each stage were 

varied while the cuts were held constant. For the third test, both cuts and 

separation factors were varied simultaneously.  

For each test, two graphical displays are given. The first graphical display 

is three plots in one. One plot is the empirical cumulative distribution function, 

ECDF, the enriched 235U product at stage 50 for all 200 problems. A second plot 

labeled Normal Fit is the normal distribution with the same mean and standard 

deviation as ECDF. Likewise, the third plot, ECDF Normal, is a plot of 200 

randomly generated numbers of normal distribution with the same mean and 

standard deviation as ECDF. The x-axis is the amount of enriched 235U at stage 
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50, and the y-axis is the probability 1/ n for each of the n problems in the 

sample. 

The second graphical display is the result of a Kolmogorov-Smirnov (K-S) 

test used to test the normality of the empirical data. A one-sample K-S normality 

test is a normality test that compares the ECDF of sample data with a 

distribution that would be expected if the data were normal. Minitab [11] was 

used to conduct all K-S tests. The one-sample K-S test performs a hypothesis test 

to determine whether the empirical data follow a normal distribution or not (see 

Appendix B for a full explanation of hypothesis testing). The null and alternative 

hypotheses are, respectively, 

H0:  The data follow a normal distribution. 

H1:  The data do not follow a normal distribution. 

The K-S test gives a plot with five values as outputs:  the mean, the 

standard deviation, the sample size N, the test statistic KS which is also known 

as the D statistic, and the probability P-Value. The mean and standard deviation 

are calculated from the empirical data while N is the number of data points in 

the test sample. The test statistic KS is the maximum vertical distance between 

the ECDF of the empirical data and the CDF of the Gaussian that has the same 

mean and variance as the empirical data. The P-Value is the smallest significance 

level at which 0H may be rejected. 

The outputs of the K-S graph provide two ways to test whether the 

empirical data are normally distributed or not. The first way is to choose an  -

level and then use this  -level to compute a decision value. If the KS statistic is 

greater than the decision value, then the test statistic falls into the critical or 

rejection region, and H0 can be rejected. The conclusion would be that the data 

does not follow a normal distribution. If the KS statistic is less than the decision 

value, then the test statistic resides within the noncritical or nonrejection region, 

and H0 cannot be rejected. A failure to reject H0 means there is not sufficient 

reason to conclude the data does not follow a normal distribution. For a two-

sided test where the  -level is 0.01, Massey [8:70] gives the equation to compute 

the decision value as 
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1.63

 decision value
N

  (22) 

where N is the sample size greater than 35. For sample sizes of 35 or fewer, pre-

calculated decision values can be obtained from tables. Because each data set was 

generated using 200 problems, the decision value is 0.115 for the K-S tests that 

will be performed. A decision value good to three decimal places allows for a 

consistent comparison with the output values given by Minitab. 

The second way is to use P-Value. If this value is less than the chosen  -

level, H0 can be rejected. Otherwise, if this value is greater than the  -level, H0 

cannot be rejected.  

 

Varying All Cuts for All Stages, 235U at Stage 50 

Using a 50-stage cascade, each stage was given a different perturbed cut. 

Each 50-stage cascade represented one problem, and 200 problems were solved. 

For each problem, the cuts were varied between 0.456 and 0.480 on the order of 

0.01. This range of cuts allowed 235U to enrich to a sufficiently high percentage of 

80% or higher. While the cuts could theoretically have values between 0 and 1, 

this particular range was chosen because the effect on the 235U fractions would be 

easily noticeable from any perturbations. The separation factors were kept 

constant and were 1.42 for separating 234U from 238U and 1.30 for separating 235U 

from 238U.  

From looking at the ECDF plot in Figure 6, it does not appear to be 

Gaussian. The plot lacks the right shape or symmetry. None of the data points of 

ECDF are close to the data points of ECDF Normal except potentially where the 

two plots intersect. If the output data were normally distributed, the ECDF plot 

would have matched the ECDF Normal plot fairly well.  
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Figure 6.  Perturbed Cuts for all Stages, 235U at Stage 50 

 

Figure 7 shows the results of the K-S test on the data obtained from 

perturbing 50 cuts. The plot in red is the distribution of enriched 235U at stage 

50. The straight line is an estimate of the cumulative distribution function for the 

sample from which the data are drawn. If the empirical data were normally 

distributed, it would form a fairly straight line and overlap the blue line. The 

empirical data clearly do not match the straight blue line. The KS value of 0.132 

is greater the decision value of 0.115. The P-Value is also less than 0.01 which is 

less than the  -level. The null hypothesis is rejected, and the conclusion drawn 

is that the uncertainty output data are not normally distributed when cuts were 

perturbed for all 50 stages. With this conclusion, there is less than a 1% of 

making a Type I error by rejecting the null hypothesis. 
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Figure 7.  K-S Test for 50 Perturbed Cuts, 235U at Stage 50 

 

Varying All Cuts for All Stages, 235U at Stage 25 

 As a comparison, the same problem was solved again except the enriched 
235U percentage was taken from stage 25, the middle of the cascade. Figure 8 

shows a distribution than is more Gaussian than the enriched 235U at stage 50. 

The K-S test in Figure 9 has a test statistic of 0.111 which is less than 0.115. The 

null hypothesis cannot be rejected at the 0.01-level. However, at the 0.05-level, 

Massey [8:70] gives the decision value equation as 

 
1.36

 .decision value
N

  (23) 

This gives a decision value of 0.096. We can reject 0H and say the distribution is 

not normally distributed at the 0.05-level. 

There is a discrepancy between the implications of the test statistic value 

and the p-value that is worth noting. The test statistic indicates a failure to 

reject 0H while the small p-value indicates 0H should be rejected. Because 
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Massey’s equations for computing decision values date back to 1951, there are 

good reasons to believe his approximations have limited precision. While these 

approximations may have been acceptable in 1951, their accuracy would not 

compare favorably with the approximations computed by modern computers. It 

is more reasonable to think that Minitab has correctly computed the test statistic 

and p-value for this particular problem. 

 

 
Figure 8.  Perturbed Cuts for all Stages, 235U at Stage 25 
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Figure 9.  K-S Test for 50 Perturbed Cuts, 235U at Stage 25 

 

Varying Separation Factors for all Stages 

For the second set of problems, the separation factors were varied between 

1.00261 and 1.917. The dAlphaForUnitMassDifference input was set to 0.1 with a 

mean of 0 and a standard deviation of 0.01 to get this range of values for the 

separation factors. This gave a good range of alphas to test how varying this 

input parameter would affect the enriched 235U product. The cut was kept 

constant at 0.47 for all stages. Figure 10 shows outputs that do not look quite 

Gaussian. The K-S test in Figure 11 gives a KS statistic of 0.179 which is greater 

than 0.115, and a very small p-value of less than 0.01. Given the results of these 

two values, the conclusion drawn is that perturbing alphas with Gaussian errors 

in this instance give non-Gaussian outputs. 
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Figure 10.  Perturbed Alphas for all Stages 

 

 

 
Figure 11.  K-S Test for 50 Perturbed Alphas 
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Varying All Cuts and Separation Factors Together for All Stages 

In the third set of problems, both cuts and separation factors were varied 

simultaneously for all stages. Because varying cuts alone and varying separation 

factors alone gave non-Gaussian outputs, varying both inputs jointly should also 

produce non-Gaussian outputs. Cuts and alphas were varied over the same range 

of values used when both input parameters were varied individually. Figure 12 is 

very similar to the plots generated previously when cuts and alphas were 

perturbed separately. Here, the KS statistic is larger than both of the KS 

statistics for perturbing cut and for perturbing alpha individually. The K-S test 

in Figure 13 also indicates that the data are not Gaussian. 

 

 
Figure 12.  Perturbed Cuts and Alphas for all Stages 
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Figure 13.  K-S Test for 50 Perturbed Cuts and Alphas 

 

V.B. One Cut for All Stages 

For this problem, the cut was varied between 0 and 1. The range between 

0 and 1 was broken up into five intervals:  0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 

0.8, and 0.8 to 1. For each interval, 50 random cuts were drawn over that 

particular interval. The 50 cuts were then used to solve 50 problems. Because 

each cascade problem only had one cut, all 50 stages in the cascade were given 

the same cut.  

Figure 14 shows the percentage of enriched 235U as a function of cut. The 

x-axis is the cuts while the y-axis is the percentage of 235U product at stage 50. 

For low cut values, 235U does a fairly decent job of enrichment. When the cut 

starts to approach 0.5, 235U peaks before dropping off steeply. Beyond 0.5 for 

cuts, 235U hardly enriches at all and peaks at 0.7%. 
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Figure 14.  235U Product as a Function of Cut 

 

V.C. Varying Cut at One Stage Only 

For the next set of problems, the cut was varied at only one stage while 

the other 49 cuts remained constant. Varying the cut for one stage only could 

give some insight into whether the cut is more sensitive at one stage of the 

enrichment cascade than another. Because a cascade has an enriching section and 

a stripping section that perform different functions, some variation in enriched 
235U product should be seen. 

All cuts were initially set to 0.47. The chosen stage to be perturbed was 

then given a new cut that ranged between 0 and 1. The actual range generated 

by the random number generator fell approximately between 0.169 and 0.775. 

The stages chosen to receive the perturbed cut include stage 1, stage 50, the 

stage where feed is fed into the cascade, a stage in the middle of the cascade, a 

stage between the first stage and the feed stage, and a stage between the feed 

stage and stage 50.  
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A cut of 0.47 at all stages of this particular cascade allows 235U to enrich 

to a fairly high percentage. By introducing a fairly large perturbation at one 

stage, the enriched 235U output data could indicate whether the other 49 stages 

could compensate for this one large deviation. In addition, the 235U output data 

could indicate whether the perturbation was more sensitive at one stage than 

another.  

 

Vary Cut at Stage 1 

Stage 1 is the first stage in the cascade and part of the stripping section of 

the cascade. This stage is where the depleted stream leaves the cascade as waste. 

Figure 15 shows no significant effect on 235U enrichment from perturbing the cut 

for this stage. This is not altogether surprising because stage 1 should have very 

little 235U given that the primary purpose of the stripping section is to remove as 

much 235U as possible to send up to the enriching section. Figure 15 also shows 

that the outputs for all 200 problems display a non-Gaussian distribution. 

Likewise, Figure 16 clearly does not show a plot of a straight line for the 

empirical data. The KS statistic is larger than the decision value, and the p-value 

is smaller than the  -level. As a result, the conclusion is that the output is not 

normally distributed. This result is also not unexpected because previous 

examples of varying cuts at all stages gave non-Gaussian outputs. 
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Figure 15.  Perturbed Cut at Stage 1 

 

 

 
Figure 16.  K-S Test for Varying Cut at Stage 1 
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 Figure 17 shows a plot of the enriched 235U product at stage 50 as a 

function of cut. Even for a wide range of cuts, the final 235U product did not vary 

by much, less than 2%. The smallest 235U percentage is 93.9% and the largest is 

about 95.4%. Varying the cut at the first stage really has no significant impact 

on the final amount of enriched 235U. 

 

 
Figure 17.  Enriched 235U Product as a Function of Cut for Stage 1 

 

Vary Cut at Stage 25 

Stage 25 is in the enriching section of the cascade, so varying the cut at 

this stage may have a significant effect on the output of enriched 235U. Indeed, 

Figure 18 shows that the enriched 235U outputs have a wide variance with 

percentages in the thirties to high nineties. The output shows more non-Gaussian 

behavior than previous plots. The K-S test in Figure 19 confirms this result. 
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Figure 18.  Perturbed Cut at Stage 25 

 

 

 
Figure 19.  K-S Test for Varying Cut at Stage 25 
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 Figure 20 shows a much greater change in the enriched 235U product when 

the cut was varied at stage 25, the middle of the cascade. The enriched 235U 

product peaks at approximately 97% and dips as low as 30%. The cascade is a lot 

more sensitive to the cut being perturbed at this stage. As the cut increases 

beyond 0.5, the amount of enriched 235U product drops off dramatically. 

 

 
Figure 20.  Enriched 235U Product as a Function of Cut for Stage 25 

 

Vary Cut at Stage 50 

 Stage 50 is the last stage in the cascade. The enriched stream that leaves 

this stage is the product. Figure 21 shows that varying the cut at this stage 

produces little effect on the amount of enriched 235U. This is unsurprising because 
235U would be expected to have enriched as much as possible already by the final 

stage. What is surprising, up to this point, is that the uncertainty output data 

seem to indicate a potential Gaussian distribution by how closely the empirical 

data seems to match the red normal distribution plot. However, there is still a 
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good amount of deviation between the data points of the ECDF plot and the 

ECDF Normal plot which is what the empirical data should match if the 

distribution were normal. 

 

 
Figure 21.  Perturbed Cut at Stage 50 

 

Looking at the results in Figure 22, the majority of the data appears linear 

except for the tails. The KS statistic is quite small. In fact, this is the smallest 

test statistic seen yet of all the runs. The KS statistic of 0.076 is smaller than the 

decision value of 0.115. This result would mean that H0 cannot be rejected at the 

0.01-level. If the  -level is changed to 0.2, then according to Massey [8:70], the 

equation for the decision value becomes 

 
1.07

 .decision value
N

  (24) 

This gives a decision value of 0.07566. So, at the 0.2-level, the test statistic is 

larger than the decision value, and the null hypothesis can be rejected. However, 

there is now a 20% of having committed a Type I error by concluding that the 

data are not normally distributed.  
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Figure 22.  K-S Test for Varying Cut at Stage 50 

 

 Much like perturbing the cut at the first stage, Figure 23 shows that 

perturbing the cut at stage 50 has no significant effect on the final enriched 235U 

product. The enriched 235U product varied by 3% at most, between 93% and 96%. 
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Figure 23.  Enriched 235U Product as a Function of Cut for Stage 50 

 

Vary Cut at the Feed Stage (Stage 10) 

Stage 10 is where feed is put into the cascade normally. Figure 24 is very 

similar to Figure 18 in that varying the cut at this stage causes the enriched 235U 

output data to change dramatically. The same non-Gaussian behavior is also 

seen. Figure 25 clearly shows a plot that is not Gaussian. The KS statistic of 

0.227 confirms Figure 24. 
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Figure 24.  Perturbed Cut at Feed Stage 

 

 

 
Figure 25.  K-S Test for Varying Cut at Feed Stage 
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 The plot in Figure 26 is very similar to Figure 20. The same trend is seen 

where increasing the cut up to 0.5 allows the enriched 235U product to peak before 

decreasing quickly as the cut increases. The enriched 235U product peaks at 

approximately 97% but goes as low as 33%. 

 

 
Figure 26.  Enriched 235U Product as a Function of Cut for Feed Stage 

 

Vary Cut at Stage 5 

Stage 5 was chosen as another test stage to vary the cut because it lies 

between the first stage and the feed stage. Figure 27 clearly shows the effect on 
235U enrichment. For some problems out of the 200 problems, the enrichment 

percentage ends in the sixties although there is a wide range all the way up to 

the nineties. There also is a wide deviation from the Gaussian curve. This result 

is echoed in Figure 28 with a large KS statistic of 0.283. The distribution of the 

data is not Gaussian. 
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Figure 27.  Perturbed Cut at Stage 5 

 

 

 
Figure 28.  K-S Test for Varying Cut at Stage 5 
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 Figure 29 shows the effects of perturbing the cut at stage 5, in between 

stage 1 and the feed stage. The enriched 235U product stays fairly constant 

between cuts of 0.2 and 0.55, varying at most by 5% between 91% and 96%. 

Beyond cuts of 0.55, the enriched 235U product drops as low as 61.5% 

 

 
Figure 29.  Enriched 235U Product as a Function of Cut for Stage 5 

 

Vary Cut at Stage 30  

The last stage to be perturbed was stage 30. It was chosen as a midpoint 

between the feed stage, stage 10, and the last stage or stage 50. This plot is not 

significantly different than the plots shown in Figure 18 and Figure 24. The 

percentages of 235U enrichment here are very similar to those two plots. The 

similarities indicate that the cascade is most sensitive to a change in cut starting 

at the feed stage and above. In other words, the variation in cut is more 

significant in the feed stage and enriching stages than it is for the stripping 

stages in regard to the enriched 235U product percentage. Figure 30 shows the 

results of varying cut at this stage, a non-Gaussian. The K-S test in Figure 31 
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comes to the same conclusion with a KS statistic of 0.23 which is larger than the 

decision value. 

 

 
Figure 30.  Perturbed Cut at Stage 30 

 

 
Figure 31.  K-S Test for Varying Cut at Stage 30 
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Figure 32 displays a plot that is very similar to the plots of Figure 20 and 

Figure 26. Stage 30 sits is in the middle of the feed stage and stage 50. Figure 20, 

Figure 26, and Figure 32 indicate that there exist a range of stages between 10 

and 30 where perturbing the cut at any one of these stages would not change the 

distribution of enriched 235U product. 

 

 
Figure 32.  Enriched 235U Product as a Function of Cut for Stage 30 
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VI. SUMMARY  

The purpose of this research was to develop a Monte Carlo UQ capability 

and to implement the capability in code. The UQ tool was built and integrated 

with the cascade code to handle the propagation of errors for enrichment 

cascades. Additionally, the UQ capability was demonstrated on a variety of 

multi-component cascade problems. Individual input parameters as well as 

combinations of parameters were varied to look at the effects on the percentage 

of enriched 235U product. Inputs that were perturbed with Gaussian errors were 

shown to give non-Gaussian errors in the 235U output data. While this result was 

not altogether surprising, the importance of this result is that the common 

assumption of normally distributed errors may not always be valid. 

It bears emphasizing that the test cases in this research were somewhat 

limiting in that the cascades chosen to be studied were small, the perturbations 

to the inputs were large, and only the 235U fraction was analyzed in the final 

stage of the cascade. Analyzing 235U at different points along the cascade such as 

the middle, looking at other component fractions, making the perturbations small 

instead of large, or varying the cascade parameters to enrich 235U to 50% or less 

may give much different results. As a consequence, the results of non-Gaussian 

behavior in the output data should not automatically be extended to all cases. 

Many more test cases can be done. Gathering more data with the UQ tool will 

provide greater understanding of how enrichment cascades operate with different 

inputs. 

VI.A. Achievement of Objectives 

The objectives of this research were to verify the cascade code and to 

build and demonstrate an UQ capability to handle propagation of errors. All the 

objectives were achieved. However, much more work can be done to improve 

upon the UQ capability and to use the tool to conduct a deeper statistical 

analysis of all uncertainties of an enrichment cascade. 
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Verify Cascade Code for Two and Multiple Components: Verify the 

accuracy of the cascade code for a two-component ideal cascade and for multi-

component cascades. 

The cascade code was verified for the two-component ideal cascade by 

calculating 235U inlet concentrations that matched the closed-form solution to at 

least 10 decimal places for every stage of an enrichment cascade. The largest 

SRD calculated was 112.56 10  and the average SRD was 127.97 10 . For this 

level of accuracy, plots of both the cascade solution and the closed-form solution 

would appear identical. 

The cascade code was also verified for multi-component problems through 

several checks. The first check ensured that the solution generated was correct to 

a rigorous, preset tolerance. This was accomplished internally within the code by 

checking for balance between the left-hand side and the right-hand side of each of 

the cascade equations for every stage of the cascade. None of the problems tested 

triggered any balance violations. The second check looked at the precision of the 

solution. Two runs were conducted with each one set at a different precision. The 

largest SRD and the average SRD computed were on the order of 1410 and 

1510 , respectively. This demonstrated that the code can consistently compute 

solutions that differ by a negligible amount regardless of the precision used. The 

third and final check assessed whether the solution generated was reasonable. 

The problems tested showed the percentage of 235U increasing and the percentage 

of 238U decreasing as the stage number increased. This is exactly what is supposed 

to happen in an enrichment cascade. 

Develop and Implement Monte Carlo UQ Capability: Develop the UQ 

methodology and implement the capability in code. 

The UQ methodology was developed and implemented in code. The code 

used MKL routines to generate random normal errors, added the errors to the 

input parameters, solved the perturbed problem, and wrote the uncertainty 

output data to file. The code used good modern programming practices by 

putting the computations into specific modules, subroutines, and functions that 

are portable and reusable. 
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Demonstrate UQ Capability: Perturb various cascade inputs for several 

multi-component problems. 

The UQ capability was demonstrated by perturbing cuts and alphas at all 

stages of an enrichment cascade. Cut was also perturbed at one stage at a time. 

Other demonstrations of the UQ tool included varying the feed compositions, the 

feed stage, and the number of stages. 

Characterize Uncertainty Output Data: Plot the empirical cumulative 

distributions and analyze the uncertainty output data to assess the propagation 

of uncertainties. 

The uncertainty output data were plotted using the empirical cumulative 

distributions. For comparison, normal distributions and random normal 

distributions were also plotted using the same mean and standard deviation 

computed from the empirical data. The K-S test for normality was applied, and 

the conclusion drawn was that Gaussian inputs in a nonlinear system of 

equations resulted in non-Gaussian outputs. 

VI.B. Observations and Conclusions 

One observation of interest is that the cascade code suffered from slow 

convergence, particularly for two-component ideal cascade problems. Sample 

problems tested required thousands of iterations to converge to a solution with a 

tolerance of 1210 . If UQ were done for these types of problems, computer run-

time could be an issue for large problem sets. Other than verification of the code, 

only multi-component problems were used in this research, so slow convergence 

was not an issue. The multi-component problems were solved in fewer than 200 

iterations. A multi-component problem could conceivably exist that would 

require thousands of iterations to reach a solution. 

A second noteworthy observation is that while the cascade code was used 

to solve uranium enrichment problems, the code can handle all elements with 

multiple components. This flexibility is crucial in order to apply the code to real-

world applications where the input parameters may take on a variety of values.  



55 

 

A third observation is that a normality test should always be conducted if 

data are thought be normally distributed. The assumption of normality is fairly 

common in classical statistical testing. To determine whether this assumption is 

valid, a K-S test or other suitable test should be done. 

A fourth observation is that well-defined problems are necessary to 

generate meaningful data. Input parameters can be randomly chosen in such a 

fashion that the cascade code does not produce any data of interest. That is, 

poorly chosen inputs can result in outputs where the desired isotope does not 

enrich to any significant amounts. Time spent on creating reasonable problems 

would pay off with useful output data. 

The cascade code and UQ capability are a useful tool for exploring the 

behavior of various enrichment cascades. The examples used in this research are 

only a small demonstration of the types of questions that the UQ tool can begin 

to answer. The UQ capability has much more utility than what was addressed in 

this thesis because the main objective was only to build and demonstrate a tool 

for propagation of errors. Additional utility of this capability will depend on what 

aspects of enrichment the user will want to explore and the types of questions 

that are asked. 

This research also helped to quantify a level of uncertainty that may be 

beneficial to people who build enrichment plants or work on nuclear reactors. If 

the limitations of cascade performance are known beforehand, designers can be 

cognizant of these uncertainties and incorporate them into the planning stage 

long before actual construction begins. Knowing ahead of time what performance 

parameters a plant will not exceed will help save time and funding. In addition, 

this knowledge would encourage designers not to attempt to create the perfect 

design on paper that seeks to remove all uncertainties when such a design 

construct cannot be reasonably achieved. Instead, designers can focus on working 

with the existing uncertainties and improve along the way. 
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APPENDIX A  

DERIVATIONS OF EQUATIONS 

 The closed-form solution used to verify the cascade code for two-

component ideal cascades is derived from equations (12.85) and (12.96) given in 

Benedict, Pigford, and Levi [2:659-660]. The equation for the abundance ratio in 

the product for each stage is given by 

 
for 1,...,

 



i i

i n
 (25) 

where   is the heads separation factor and i  is the abundance ratio in the feed 

at stage i. If F is the stage number where the cascade receives feed, then 

 . F F  (26) 

The abundance ratio in the product for stage F is also given by 

 
.

for 1, ,

  



F i
F i

i n
 (27) 

Because equations (20) and (21) are equivalent, 

  .      F i F i
F i i  (28) 

 When   is cancelled on both sides, the equation becomes  

 .   F i
F i  (29) 

The abundance ratio in the feed is given by 
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z
 (30) 

and  
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1

 


i
i

i

z

z
 (31) 

for stages F and i, respectively, where z is the fraction of the lighter component. 

Substituting equations (30) and (31) into equation (29) gives 

 .
1 1

 
 

F i iF

F i

zz

z z
 (32) 

Cross multiplication gives 

 .    F i F i
F F i i i Fz z z z z z  (33) 

Collect all iz terms on one side and factor out iz to get  

   .    F i F i
i F F Fz z z z  (34) 

Solving for iz , the equation for the lighter component at each stage simplifies to 

 
   

.
1 1 1 1 1 1

  

  
 
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 

   
      
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i i F i F i F
F F F F FF i F i F
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z
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 (35) 
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APPENDIX B  

HYPOTHESIS TESTING 

 Hypothesis testing is a statistical method in which the probability of a test 

result is computed to determine whether the result could have reasonably 

occurred by chance. Two hypotheses are set up, the null hypothesis and the 

alternate hypothesis. The null hypothesis, denoted by 0H , is the hypothesis 

proposed by the person conducting the testing. The alternate hypothesis, denoted 

by 1H , is the negation of the null hypothesis. The purpose of hypothesis testing 

is to determine if there is sufficient evidence to reject the null hypothesis. If there 

is insufficient evidence, then it is a failure to reject the null hypothesis. 

 The decision to reject or not reject the null hypothesis comes from 

computing a test statistic of the sample data and observing the likelihood of 

observing this statistic given the probability distribution under the null 

hypothesis. A decision value is computed that separates the probability 

distribution into two regions, a critical region and a noncritical region. The 

critical region is range of values in which the null hypothesis can be rejected. A 

test statistic that falls within the critical region indicates a low probability that 

the null hypothesis is true. Similarly, the noncritical region is the range of values 

in which the null hypothesis would not be rejected. A test statistic within the 

noncritical region shows a high probability that the null hypothesis is true. Thus, 

we would fail to reject the null hypothesis if this were the case. 

 The decision value in hypothesis testing is computed by determining the 

level of significance of the test or  -level: the probability of committing a Type I 

error. The  -level is the probability of falsely rejecting 0H  when it is in fact 

true. 

 There are four possible outcomes to a hypothesis test.  
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1. 0H gets rejected when it is actually true. There is a risk of committing a 

Type I error. 

2. 0H gets rejected and it is actually false. The decision is the correct 

decision. 

3. There was a failure to reject 0H and it is true. This is a correct decision. 

4. There was a failure to reject 0H and it is false. There is a risk of 

committing a Type II error. 

An alternative to hypothesis testing is significance testing. 0 1 and H H are 

set up exactly as before. However, there is no need to specify the critical and 

noncritical regions. Instead, a probability called the p-value is computed. The p-

value is the smallest significance level at which 0H may be rejected. If the p-value 

is smaller than the chosen  -level, 0H is rejected. 
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